
Scripting the OpenSSH, SFTP,

and SCP Utilities on i

Presented by

Scott Klement
http://www.scottklement.com

© 2010-2015, Scott Klement

Why do programmers get Halloween and Christmas mixed-up?
31 OCT = 25 DEC

2

Objectives Of This Session

• Setting up OpenSSH on i

• The OpenSSH tools: SSH, SFTP and SCP

• How do you use them?

• How do you automate them so they can be run
from native programs (CL programs)

3

What is SSH

• Tatu Ylönen (SSH Communications Corp)
• Björn Grönvall (OSSH – short lived)
• OpenBSD team (led by Theo de Raadt)

• Secure replacement for "telnet"
• Secure replacement for "rcp" (copying files over a network)
• Secure replacement for "ftp"
• Secure replacement for "rexec" (RUNRMTCMD)

SSH is short for "Secure Shell."

Created by:

The term "SSH" can refer to a
secured network protocol.

It also can refer to the tools that run
over that protocol.

4

What is OpenSSH

• Developed by the OpenBSD team
• but it's available for all major OSes

• Included with many operating systems
• BSD, Linux, AIX, HP-UX, MacOS X, Novell NetWare,

Solaris, Irix… and yes, IBM i.

• Integrated into appliances (routers, switches, etc)
• HP, Nokia, Cisco, Digi, Dell, Juniper Networks

OpenSSH is an open source (free) implementation of
SSH.

The #1 SSH implementation in the world.
• More than 85% of all SSH installations.
• Measured by ScanSSH software.
• You can be sure your business partners who use SSH will support OpenSSH

"Puffy" – OpenBSD's Mascot

5

Included with IBM i

• 57xx-SS1, option 33 = PASE
• 5733-SC1, *BASE = Portable Utilities
• 5733-SC1, option 1 = OpenSSH, OpenSSL, zlib
• 57xx-SS1, option 30 = QShell (useful, not required)

These must be installed
(all are free and shipped with IBM i **)

** in v5r3, had 5733-SC1 had to be ordered separately (no charge.) In v5r4
or later, it's shipped automatically. Starting with v6r1, it’s included on the
B29xx_02 CD.

RSTLICPGM LICPGM(5733SC1) DEV(OPTxx)
OPTION(*BASE) RSTOBJ(*ALL) LNG(2924)

RSTLICPGM LICPGM(5733SC1) DEV(OPTxx)
OPTION(1) RSTOBJ(*PGM)

Install these with the CDs/DVDs that came with i

For 5733-SC1:

6

The PASE Environment

• Input/Output in "streams"
• Scrolling command-line (or "shell") interface.
• Hierarchical directory structure (IFS)
• ASCII character set
• Fewer changes means less risk of a mistake that

might open up a security hole.

OpenSSH was originally written for a Unix environment. IBM chose to
keep the number of changes as small as possible.

The Portable Application Solutions Environment (PASE) provides Unix
compatibility on IBM i.

• Run AIX programs with minimal changes (or no changes)
• Use existing AIX compilers to generate the code
• Provides full Unix environment on i

7

PASE and the Shell

To put yourself at a PASE command line ("shell"), type:

CALL QP2TERM

The prompt. Tells
you that the shell is

ready for a
command.

Commands are
typed down here.
(But wait until you

see a prompt!)

This area is for text
to scroll as the

programs you run
print output.

8

Calling Programs in a Unix Shell

For example, if I typed the following command:

cd /tmp

• Up to the first space is the program name
• The rest of the line is a series of parameters to b e passed to that program,

separated by spaces (in this example, there's only one parameter, '/tmp')

Therefore, the preceding Unix command is equivalent to the following syntax
at the traditional IBM i command-line:

CALL PGM(CD) PARM('/tmp')

By contrast, this is calling the program named 'mv', and passing two
parameters:

mv test.key /home/sklement/.ssh

9

Quoting Special Shell Characters

There are several characters that have special meanings when typed at a
Unix shell.

• Blanks delimit parameters
• Dollar-signs insert variables
• Semi-colons allow more than one command on a line
• Back-slashes mean that the next character is taken literally.
• Ampersands, pipes, greater than, less than all have special meanings
• Characters in quotes do not have special meanings, except:

• Inside double-quotes ("weak quotes") dollar signs a nd double quotes
• Inside single-quotes ("strong quotes") only the sin gle quote itself has

a special meaning. Or a backslash if it's followed by a single quote or
another backslash.

This example works because the spaces and single qu otes do not have special
meanings when typed inside weak quotes:

cp "Today's Lesson.ppt" "archive/Yesterday's Lesson.ppt"

10

Finding Programs with PATH

To find a program, the PASE shell (like other Unix shells) will search all
directories in your PATH environment variable. PATH contains a list of IFS
directories to search, separated by colons. Here's an example of setting the
PATH from the native environment (prior to calling QP2TERM:)

If I typed the following command in PASE:
mypgm parm1 parm2 parm3

PASE would look for a program named 'mypgm' by sear ching these IFS paths:

• /QOpenSys/usr/bin/mypgm
• /dir1/mypgm
• /dir2/mypgm

Think of PATH the way you think of library lists. (Except it's only used to locate
programs -- *LIBL are used for files and other objects, too.)

ADDENVVAR ENVVAR(PATH) VALUE('/QOpenSys/usr/bin:/di r1:/dir2')

11

Basic PASE Tools
A few commonly used programs (included with PASE):

cd dirname Change current working directory to dirname

cp src dest copy a file (src) to another name or directory (dest)

mv old new Move / rename old file to new name

pwd Print working directory

mkdir dirname Create (make) a new directory name dirname

chmod mode file Change authorities (mode) of file

ls List files (like 'dir' in MS-DOS, or WRKOBJ)

ls –l List files in long format (more info about the file s)

cat file Dump the contents of file on the screen

rm file Delete file

find tree expr Search for files in tree that match expr

More Info about PASE (as well as QShell) is found in the Information Center
under Programming -> Shells and Utilities

12

OpenSSH Tools Provided

ssh

Secure shell client
• Like telnet client (but secure) creates an interactive logon.

• also works as a 'remote command' tool.

• can create TCP 'tunnels' that are secured by SSH

scp
Secure copy

• Like Unix cp (copy) command, can copy stream files

• Copies securely over a network if prefixed by host name

sftp

Secure file transfer program
• Like ftp, but uses the SSH protocol (not FTP protocol) and is secure

• does not support ASCII/EBCDIC translation.

• Usually use CPYTOIMPF/CPYFRMIMPF with this tool.

sshd

Secure shell daemon (daemon = server)
• Acts as a server for all ssh tools (ssh, scp, sftp)

• Interactive logons will be PASE shell logons – allowing true Unix ttys

• Can be chrooted (user is locked into a given area of the IFS)

Also:
• ssh-keygen for generating public and private keys

• ssh-agent allows you to load keys into memory for re-use

13

EXAMPLE: Set up SSHD on IBM i 6.1

For example, let's say you want to be an SSH server.

Acme Foods, Inc. wants to allow customers to order food items by uploading
XML files via the 'sftp' or 'scp' tools in SSH.

Assuming that you are tasked with setting up SSHD to allow users to upload (or
download) from your server, you'd have to run the following command on IBM i
6.1 (or higher)

STRTCPSVR SERVER(*SSHD)

That's all. It will automatically generate public/private keys for you the first
time it's run. Users can now log on with SSH, SCP or SFTP using their
normal IBM i userids and passwords.

14

EXAMPLE: Set up SSHD on v5r3 or v5r4

(This is not needed on 6.1 or higher -- see previous slide.)

Before you can act as an SSH server, (named sshd) you need digital
(cryptographic) keys that others can use to verify that you are you.

On i5/OS v5r3 or v5r4:
• Run the following commands from within PASE (CALL QP2TERM):

cd /QOpenSys/QIBM/UserData/SC1/OpenSSH/openssh-3.5p 1/etc/

ssh-keygen –N "" -t rsa1 –f ssh_host_key

ssh-keygen –N "" -t dsa –f ssh_host_dsa_key

ssh-keygen –N "" -t rsa –f ssh_host_rsa_key

Unix commands are case-sensitive. Please match the upper/lower case
exactly.

15

EXAMPLE: Start SSHD on v5r3 or v5r4

STRQSH CMD('/QOpenSys/usr/sbin/sshd')

On i5/OS v5r3 or v5r4:
• The easiest way is to use QShell from the native environment:

/QOpenSys/usr/sbin/sshd

• You can also start it from within CALL QP2TERM

Note: Please don't try to start sshd via the QP2SHELL API. Strange results have
been noted in that environment. Use QShell (STRQSH) instead.

(This is not needed on 6.1 or higher -- see previous slides.)

16

It's Started. Now What?

Now that you've started SSHD, users can log on with their IBM i user profiles and
passwords.

•Logging on with the SSH tool will give them an interactive PASE command line.

•Logging on with the SCP tool will let them copy files to/from our server.

•Logging on with the SFTP tool will let them copy files to/from the server, plus get
directory listings, rename, files, etc. All the things you expect from FTP.

BUT…..
•Just because Acme Foods, Inc is running IBM i doesn't mean their customers
are! What if the customers are running Windows? They might try Putty!

17

Test Out SSHD with Putty (1 of 2)

Putty works nicely for Acme Foods' customers who use Windows.
• free ssh software for Windows
• only client-side tools (no server)
• provides putty (ssh), pscp (scp) and psftp (sftp) tools for Windows.

http://www.chiark.greenend.org.uk/~sgtatham/putty/

Type the host name or
IP address of the IBM i

system where you
started sshd

Verify that it's using
port 22, and the ssh

protocol

18

Test Out SSHD with Putty (2 of 2)

Sign in with your
typical IBM i user-id,
then press ENTER,

then type your
password and ENTER.

You are now in PASE.
You can type Unix

commands – in a true
Unix tty (not 5250!)

Type 'exit' (rather than
the F3=Exit key) to end

session.

19

Test Out SSHD with PSFTP

Sign in with your
typical IBM i user-id,
then press ENTER,

then type your
password and ENTER.

You now have a secure
FTP session where you
can 'get' or 'put' files.

Add the location where
Putty resides to your

MS-DOS 'PATH'

This is run from a Windows Command Prompt (MS-DOS prompt)
• Start / All Programs / Accessories
• -or- Start / Run / 'cmd'

20

sshd Server – Closing Thoughts

With the 'sshd' tool running on i, you can:
• Be a server for 'sftp' requests. (Securely transfer files to/from your box.)
• Same with 'scp' (which is often simpler when automating transfers.)
• Server 'ssh' requests – run remote commands securely?
• Interactive logons to PASE.

Why would I want interactive logons to PASE?
• The 5250 terminal is very different from a real Unix terminal (or 'tty')
• Using Putty (or xterm from Linux/Unix) and ssh gives a true Unix terminal
• Useful for programs that are strict about terminal I/O.

Common 'gotchas'
• Due to a limitation in AIX (not in ssh) userids need to be 8 chars or shorter
• sshd must be started by a profile with *ALLOBJ authority.
• All ssh services run on port 22. This must be open through firewalls.
• LMTCPB(*YES) has no impact on sshd, but object-level authority works.
• Perhaps allows too much access to your system?
• Restrict access with chroot (see link at end of presentation)

21

Client Side Tools – Initial Setup

SSH will store certain files in the .ssh subdirectory of your home directory
• Home directory is defined in user profile (CHGUSRPRF / CHGPRF)
• By default, it's /home/ my-user-id

From PASE: mkdir /home/ my-user-id
• So SSH files go in /home/ my-user-id/.ssh

From PASE: mkdir /home/ my-user-id/.ssh
• Home dir cannot allow public write access (would open security hole)

From PASE: chmod go-w /home/ my-user-id
• .ssh directory cannot allow public access at all (same reason)

From PASE: chmod go-rwx /home/ my-user-id/.ssh

Remember: Adopted authority doesn't work in the IFS.
• Home directory will be based on the real user's home directory.
• Authority to files is based on the real user's authority, not adopted user's.
• If you really want to, you can swap userids with APIs.

QSYGETPH, QWTSETP, QSYRLSPH
• These APIs are also useful to working around the 8-char userid problem.

22

Client-side SSH Tool

The 'ssh' command in PASE gives you an interactive logon to another computer
(like the 'putty' command did in Windows)

SSH checks to see if
host is in your

known_hosts file

Once you say 'yes', it
remembers the digital
key from that host. It

verifies that it's always
the same.

The digital key is saved in
the known_hosts file in your

.ssh directory.

23

Passwords vs. Digital Keys

SSH! Don't give away your password to
whomever might be listening!

24

Public Key Cryptography

When the server was established, a public/private key pair was generated.
• data encrypted with public key requires private key to decrypt
• public keys can be freely shared.
• private keys are never shared.

Server sent us their public key.
• ssh saved it to a file.
• future connects verify that the key is the same
• data is encrypted with the public key and sent to the server. If the server

can decrypt it, it proves who they are (nobody else has the private key, so
nobody else could decrypt our data.)

• man-in-the-middle attacks fail because they won't have the private key.

So we know we're talking to the right server, and only it can read our data!

But .. So far, we haven't given the server our public key. Instead, we've
authenticated with a user-id and password.
• not nearly as secure as cryptographic keys – but is still very common.

25

Digital Keys

Digital keys provide long, random, cryptographically verifiable "passwords"
(authentication strings) that the user doesn't have to remember.

Studies have shown passwords to be one of the weak links in security.
• A good password is long and random (and impossible to remember!)
• Most passwords are 8-15 characters long. (Easy to crack.)
• Subject to social-engineering attacks
• Subject to phishing attacks, man-in-the-middle attacks
• When coded into a script, a password is visible to anyone with access to

source code or the ability to dump or debug the object.

Studies have shown passwords to be one of the weak links in security.
• Bruce Schneier noted in 2006 that 55% of passwords on MySpace would

be crackable in 8 hours with commercially available software.
• CERN analyzing an attack in 1998, it was found that the attacker (with help

of software) had successfully guessed more than 47,000 passwords on a
system with 186,000 accounts. This was done by taking common
passwords from other sites.

26

Establishing Digital Keys

Never give the id_rsa file to anyone. Protect it with object-level security.

The id_rsa.pub file should be sent to the server-side to enable logins.

SSH supports three types of keys:
• rsa1 = RSA key for protocol version 1.
• rsa = RSA key for protocol version 2 (default & most secure)
• dsa = DSA key for protocol version 2.

To generate a key for client-side use (shared by ssh, scp and sftp)
• Log on as the user who will be running the ssh, scp or sftp client.
• Type: CALL PGM(QP2TERM)
• Type: ssh-keygen -t rsa -N ""
• Press ENTER to accept default dir (/home/userid/.ssh/id_rsa)

In the directory (above):
• Private key is now stored in the id_rsa file.
• Public key is now stored in the id_rsa.pub file

This stuff is always
done on the “client

side” (the side running
the ‘sftp’, ‘scp’, or ‘ssh’
program – not the sshd

server.)

27

Installing a Digital Key on the Server

To allow a public key to be used in place of a password:
• Transfer id_rsa.pub to the server.
• Add the contents of id_rsa.pub to the end of the authorized_keys file.

The best solution will depend on whomever administers the ssh server.
For servers managed by 3rd-parties, you'll usually want to download the
public key to your PC, and e-mail it to the administrator.

If you are running the server, and someone has sent you a key, add it to the
that user’s authorized keys file, from within PASE type:

Ways to transfer the id_rsa.pub file:
• Use traditional FTP.
• Use the ssh tools (ssh, scp or sftp) with password authentication
• Use Windows Networking (/QNTC or NetServer)
• Use iNav to get the key to your PC, then transfer in E-mail or similar.

cat /tmp/id_rsa.pub >> /home/user-id/.ssh/authorize d_keys

28

Back to the SSH Tool

The 'ssh' command in PASE gives you an interactive logon to another computer
(like the 'putty' command did in Windows)

For an interactive logon:

ssh -l remote-user-id host.example.com
• without -l , assumes remote user name is same as local one.

To run a remote command (without interactive logon):

ssh -n -l scottk mybank.example.com command-to-run
• -n disables input to the remote command (required in batch)
• -l scottk is the userid I want to log in with.
• command-to-run is a command to run on the remote host.

for sshd on IBM i, this is a PASE command
to run a native command, you can use the 'system' tool.

29

Running Remote Commands

Log on to Unix machine, switch directory, list directory to an IFS file

ssh -l scottk unix.example.com cd /tmp "&&" ls -l > dirlist.txt

Log on to Unix machine, run "process daily" script.

ssh -l scottk unix.example.com /usr/bin/process_dai ly.sh

Run a native command on an IBM i server – maybe executed from a Unix
server? (this would be entered as one long command. line wrapping added to
make slide easier to read)

ssh -l sklement i.example.com
system \""sndmsg msg('Processing complete. Have a n ice

day!') tousr(sklement)"\"

30

Passwords Don't Work
(but see the later slides that make them work, anyway)

Another reason to use digital keys:
• passwords do work with ssh tool on a 5250 terminal
• passwords don't work with scp on 5250
• passwords don't work with sftp on 5250

This isn't true of a "real" Unix terminal, however. If you set up sshd and connect
with Putty, you can use passwords with scp or sftp.

> sftp mybank.example.com
Connecting to mybank.example.com...
Host key verification failed.
Connection closed
$

$ sftp mybank.example.com
Connecting to mybank.example.com...
Password:
sftp>

31

The Secure Copy Tool

scp user@host:from-file user@host:to-file

• copy (duplicate) the from-file to the to-file
• user@ is optional. if not given, the local user na me is assumed.
• host: is optional. if not given, the local host is assumed.

scp scottk@mybank.example.com:/home/klement/daily.d at
/custs/daily/daily.csv

• Logs on to “my bank” (mybank.example.com using ssh protocol.)
• signs in with user = scottk
• copies from bank’s file named /home/klement/daily.d at
• Copied to local file /custs/daily/daily.csv

scp /custs/daily/daily.csv randi@simple.com:/var/up loads/daily.dat

• other direction… copies local file to remote system .

32

Automating (Scripting) the SCP Tool

PGM
DCL VAR(&RMTFILE) TYPE(*CHAR) LEN(100) +

VALUE(‘check_reconciiation.txt')
DCL VAR(&LCLFILE) TYPE(*CHAR) LEN(100) +

VALUE('/usr/secure/checks.txt')
DCL VAR(&CMD) TYPE(*CHAR) LEN(500) +

CHGVAR VAR(&CMD) VALUE('PATH=$PATH:/QOpenSys/usr/bin && +
scp scottk@mybank.example.com:"' +
*CAT &RMTFILE +
*TCAT '" "' +
*CAT &LCLFILE +
*TCAT '"')

ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) +
VALUE(NONE) +
REPLACE(*YES)

ADDENVVAR ENVVAR(QIBM_QSH_CMD_ESCAPE_MSG) VALUE(Y) +
REPLACE(*YES)

QSH CMD(&CMD)
MONMSG MSGID(QSH0000) EXEC(DO)

SNDMSG MSG('File transfer failed!') +
TOUSR(SKLEMENT)

ENDDO

ENDPGM

SCP is much easier for
automated file transfers than

SFTP, because the whole
process can be done in one

line.

QIBM_QSH_CMD_OUTPUT
controls whether any

messages are printed on the
screen (or not)

QIBM_QSH_CMD_ESCAPE_MSG
causes an *ESCAPE message to
be sent when a file transfer fails,
MONMSG is used to capture that

escape message.

33

The Secure File Transfer Program (SFTP)

sftp -b batch-script scottk@mybank.example.com

• Logs on to mybank.example.com using ssh protocol.
• signs in with user = scottk
• commands to run on host are read from a (local) IFS file named batch-script
• Script must be in ASCII, each line terminated with LF (in Unix style)

sftp scottk@mybank.example.com

• Logs on to mybank.example.com using ssh protocol.
• signs in with user = scottk
• puts you at a command-prompt
• you can use get, put, cd, lcd, rm, rmdir, rename commands

sftp scottk@mybank.example.com

sftp -b batch-script scottk@mybank.example.com

34

Automating the SFTP Tool

To create a batch script for SFTP, the script must be an ASCII file. You can
create one in the (local) IFS as follows:

cd /edi/outgoing/klement
get file1.edi
rm file1.edi
get file2.edi
rm file2.edi

STRQSH CMD('touch -C 819 /tmp/myscript.ftps')

Now use the EDTF command to edit the script. (Use F15 and set EOL to *LF)
type the following:

sftp -b /tmp/myscript.sftp scottk@mybank.example.com

Now you can run the script as follows:

35

Error Handling in SFTP

cd /edi/incoming/klement
-rm file1.edi
put file1.edi
-rm file2.edi
put file2.edi

SFTP will stop running when:
• it reaches the end of the script, and no errors occur (success!)
• one of the commands fails (failure!)
• unlike traditional ftp, sftp does not normally continue if a command fails.
• if you'd like it to ignore an error, you may precede a command with -
• due to a bug, this "stop on error" didn't work in the early versions of 5733SC1,
but IBM fixed it with a PTF. (V5R3 SI25208 / V5R4 SI25209)

In this example:
• if file1 exists, I want to delete it. But if not, I don't want the script to stop.

36

Automating SFTP with CL

PGM
DCL VAR(&USER) TYPE(*CHAR) LEN(10) +

VALUE('scottk')
DCL VAR(&HOST) TYPE(*CHAR) LEN(100) +

VALUE('mybank.example.com')
DCL VAR(&CMD) TYPE(*CHAR) LEN(500)

ADDENVVAR ENVVAR(SFTP_USER) VALUE(&USER) REPLACE(*YES)
ADDENVVAR ENVVAR(SFTP_HOST) VALUE(&HOST) REPLACE(*YES)

CHGVAR VAR(&CMD) VALUE('PATH=$PATH:/QOpenSys/usr/bin && +
sftp -b /tmp/myscript.sftp $SFTP_USER@$SFTP_HOST')

ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) +
VALUE('FILEAPPEND=/tmp/sftplog.txt') +
REPLACE(*YES)

ADDENVVAR ENVVAR(QIBM_QSH_CMD_ESCAPE_MSG) VALUE(Y) +
REPLACE(*YES)

QSH CMD(&CMD)
MONMSG MSGID(QSH0000) EXEC(DO)

SNDMSG MSG('File transfer failed! See /tmp/sftplog.txt') +
TOUSR(SKLEMENT)

ENDDO

ENDPGM

You can set any ENVVAR you
like with the ADDENVVAR

command.

ENVVARs can be inserted into a
Unix command-line by preceding

the variable name with $

FILEAPPEND= allows output to
be appended to an IFS file.

37

Passwords Do Work

Despite my earlier statement (as well as statements made in some IBM
documents!) password authentication can be made to work with SCP
and SFTP.

They will work as long as the password seems to be typed from a valid
Unix terminal (which means they can't come from a 5250 terminal or be
supplied by a CL program or SFTP script.)

Furthermore, passwords aren't a good idea.
• but what if you had an important cust who required password auth?
• The customer is always right!
• You don't really have a choice.

There's a tool called Expect that's designed to automate any Unix tool.

38

The Expect Tool

Expect is free software, developed by Don Libes at the U.S. National Institute of
Standards and Technology (NIST).
(See download link at the end of this presentation)

• Looks (to SSH & friends) like a true Unix terminal
• Has the ability to "type" for the user (send strings)
• Has the ability to scan output from program (SFTP in this example) for key

phrases, and act upon them
• Expect isn't purely for SFTP and SCP. It can be used with any Unix utility.

Since it acts like a real terminal, Expect can be used to send a password to any
of the OpenSSH tools.

Expecting has a sophisticated scripting language, designed for automating tasks
on Unix machines.

39

Sample Expect Script

#!/usr/local/bin/expect -f
set timeout 20
spawn sftp $env(SSH_USER)@$env(SSH_HOST)
expect {

default {exit 2}
"continue connecting (yes/no)?" {send "yes\n"; exp_ continue}
"assword:" {send "$env(SSH_PASS)\n"; exp_continue}
"sftp>"

}
send "put direct_deposit.ach\n"
expect {

default {exit 2}
"not found" {exit 3}
"sftp>"

}
send "quit\n"
exit 0

Any where you see
$env(SOMETHING) it represents

an environment variable.

This makes it easy to pass data
from CL programs, just set a
variable with ADDENVVAR.

When expect exits with 0, it will
look like success to the CL

program.

When it exits with non-zero, it
will look like an error.

40

Running Expect from a CL Program

DCL VAR(&USER) TYPE(*CHAR) LEN(15) VALUE('scottk')
DCL VAR(&PASS) TYPE(*CHAR) LEN(15) VALUE('bigboy')
DCL VAR(&HOST) TYPE(*CHAR) LEN(50) +

VALUE('mybank.example.com')
DCL VAR(&CMD) TYPE(*CHAR) LEN(500) +

CHGVAR VAR(&CMD) VALUE('PATH=$PATH:/QOpenSys/usr/bin+
:/QOpenSys/usr/local/bin && +

expect -f myscript.exp')

ADDENVVAR ENVVAR(SSH_USER) VALUE(&USER) REPLACE(*YES)
ADDENVVAR ENVVAR(SSH_HOST) VALUE(&HOST) REPLACE(*YES)
ADDENVVAR ENVVAR(SSH_PASS) VALUE(&PASS) REPLACE(*YES)

ADDENVVAR ENVVAR(QIBM_QSH_CMD_OUTPUT) +
VALUE('FILE=/tmp/expect.log') +
REPLACE(*YES)

ADDENVVAR ENVVAR(QIBM_QSH_CMD_ESCAPE_MSG) VALUE(Y) +
REPLACE(*YES)

QSH CMD(&CMD)
MONMSG MSGID(QSH0000) EXEC(DO)

SNDMSG MSG('File transfer failed! See /tmp/expect.log') +
TOUSR(SKLEMENT)

ENDDO

Notice the ADDENVVARs match
the $env(VAR) in Expect.

FILE=/tmp/expect.log

the 'FILE' part causes the file to
be replaced each time.

41

More Infomation
To learn more about using OpenSSH on IBM i:

IBM Porting Central (Official site of 5733-SC1)
http://www-03.ibm.com/servers/enable/site/porting/tools/openssh.html

IBM Technote: Using chroot to Restrict ssh to specific directories
http://www-01.ibm.com/support/docview.wss?uid=nas1eafce9e44f206348862575ce007c7619

OpenSSH information on ScottKlement.com
• Links to all of Scott's articles about SSH
• Manual pages for OpenSSH tools
• Additional links to IBM resources

http://www.scottklement.com/openssh/

Expect (official site):
http://expect.nist.gov

Expect download for PASE:
http://www.scottklement.com/expect/

42

This Presentation

You can download a PDF copy of this presentation fr om:

http://www.scottklement.com/presentations/

Thank you!

