
RPG and the IFS

Presented by

Scott Klement
http://www.scottklement.com

© 2004-2019, Scott Klement

“There are 10 types of people in the world.

Those who understand binary, and those who don't.”

2

What is the IFS?

• Stream (PC style) files can be stored on IBM i DASD
with the same naming conventions as used in
Windows, MS-DOS or Unix

• Stream files stored on a CD-ROM or optical drive

• Stream files stored on a Windows (or Samba) server

• Stream files stored on Unix/Linux servers

• Files stored on a different IBM i system

• “Normal” IBM i Libraries and Objects

The Integrated File System, or IFS, is an interface
that IBM i programs can use to access various
types of files, including:

3

What's integrated into the IFS?

/QOPT Optical filesystem, CD-Rom

/QFileSvr.400 Other IBM i Systems and their directories

/QNTC Windows file shares

/QSYS.LIB IBM i traditional libraries and objects

/QDLS OfficeVision and old Shared Folders

/QOpenSys Unix-like case sensitive files and folders

(your choice) Mounted NFS directories

/ Everything else falls under “root”

To access a file system, start the path name with a
different value... (Some examples, later!)

4

Tools to Explore the IFS Interactively

• The WRKLNK command from the IBM i command line in

a 5250 session (similar to WRKOBJ!)

• QShell or PASE from a 5250 session

• iSeries Navigator

• Windows “Network Neighborhood” (but the various parts

of the IFS must be “shared”)

• NFS from Linux or another Unix-like system

• FTP, if you specify “quote site NAMEFMT 1”

However, today I'll show you how to access the IFS from your RPG programs!

5

Hello World

H DFTACTGRP(*NO)

/copy ifsio_h

D fd s 10I 0
D data s 50A

/free

fd = open('/tmp/hello.txt': O_CREAT+O_TRUNC+O_WRONLY: M_RDWR);
if (fd < 0);

// check for error here.
endif;

data = 'Hello World!' + x'0d25';
callp write(fd: %addr(data): %len(%trimr(data)));

callp close(fd);

*INLR = *ON;
/end-free

6

The IFS isn't only for /FREE RPG

H DFTACTGRP(*NO)

/copy ifsio_h

D name s 100A varying
D x s 10I 0
D data s 50A

c eval name = '/tmp/hello.txt'
c eval x = open(name
c : O_CREAT+O_TRUNC+O_WRONLY
c : M_RDWR)
c if x < 0
* check for error here

c endif

c eval data = 'Hello World!' + x'0d25'
c callp write(x : %addr(data)
c : %len(%trimr(data)))
c callp close(x)

c eval *inlr = *on

7

Differences between RPG I/O and
“UNIX-style” or “C-style” I/O

RPG “hard-wires” each file to the program

• You can use an OVRDBF, but the file will still “look” the same

• Each READ, WRITE, UPDATE, etc. is tied to a specific file

• If you want to process two files, you need separate F-specs,
separate READ statements, etc.

That's not the way that C programs work!

• A single I/O operation can work on many files

Then, how does it know which file to operate on?

• The open API gives you a different number (“descriptor”) for
each file you open

• You supply this number to each subsequent API to tell it
which file to access

8

One operation for many files

D name s 100A varying
d x s 10I 0
d fd s 10I 0 dim(10)

… later in program …

for x = 1 to %elem(fd);

name = '/tmp/test' + %char(x) + '.txt';
fd(x) = open(name: O_CREAT+O_TRUNC+O_WRONLY: M_RDWR);

if (fd(x) < 0);
// check for error

endif;

endfor;

9

Without an F-spec, how do you…

Specify I=Input, O=Output, U=Update?
• You pass this in the “openflags” parameter to the API

• It can be O_RDONLY, O_WRONLY, or O_RDWR

• Many other things can be specified as you'll soon see!

What about the record length?
• The operating system does not organize IFS files into records

• Records are determined by program logic

What kind of program logic?
• Sometimes you use fixed-length records

• Other times, you might look for a special character sequence

• CR/LF (EBCDIC x'0d25') is a very common sequence

• You can use any sequence that you like

10

The open() API (slide 1 of 4)

D open PR 10I 0 ExtProc('open')
D path * value options(*string)
D openflags 10I 0 value
D mode 10U 0 value options(*nopass)
D ccsid 10U 0 value options(*nopass)
D/if defined(*V5R2M0)
D txtcreatid 10U 0 value options(*nopass)
D/endif

The following is the RPG prototype for the IFS open() API. It
can be found found in the IFSIO_H /COPY member.

Where:

Path = path name of the file in the IFS, such as:

/home/scottk/notes/mytest.txt

Openflags = options for how the file is opened (read only, write only,

create the file if it doesn't exist, etc.) – more about this later!

Mode = permissions (“authority”) – more about this later!

Ccsid = For globalization and EBCDIC / ASCII translation. More later!

11

Open() API Considerations

The open API returns a file descriptor

• This is a number that distinguishes the file from other open files

• The number can be zero or higher

• If –1 is returned, an error prevented the file from opening

The file will remain open until you close it

• Even if the program ends with *INLR on, the file stays open

• RCLRSC does not close IFS files

• RCLACTGRP might work

• If all else fails, the file is closed when the job ends

• The job ends when you sign off, or when a batch job completes

12

Null-terminate and remove blanks

The PATH parameter
• There are no fixed-length strings in C. All strings are variable.

• Variable-length strings in C end with a x'00' character

• OPTIONS(*STRING) will automatically add that character

• You do not have to pass a pointer with OPTIONS(*STRING)

Pre-V3R7 examples will show code like the following:
D myPath s 100A

c eval myPath = %trim(file) + x'00'
c eval x = open(%addr(myPath) : O_RDONLY)

• Don't do it that way! Let the compiler do the work for you!

• Manually adding x'00' is unnecessary with options(*string)

• The use of %addr() and/or pointers is not needed!

• But do use %trimr() unless you use a VARYING field

c eval x = open(%trimr(file) : O_RDONLY)
/free

fd = open(%trimr(mydir) + '/' + %trimr(myfile) : O_RDONLY);

13

Some Path Examples

D path1 s 32768A

D path2 s 1024A varying

D scFile s 60A

D wkFile s 60A varying

/free

// Root file system, %trimr removes blanks

path1 = '/tmp/test.txt';

f1 = open(%trimr(path1): O_RDONLY);

// QDLS file system, no blanks added!

path2 = '/QDLS/MYFLR/MYFILE.DAT';

f2 = open(path2: O_RDONLY); // QDLS file system

// Optical file system, no blanks added!

f3 = open('/QOpt/job31760/addresses.csv': O_RDONLY);

// A screen field will have blanks, but they can

// be stripped when added to a VARYING field

scFile = '/QNTC/SERVER4/policies/dress_code.txt';

wkFile = %trimr(scFile);

f4 = open(wkFile: O_RDONLY);

14

Open Flags (Each bit is an option)

The OpenFlags parameter
• This parameter represents a series of bits rather than a value

• Each bit in the binary number represents a different option

Create is (binary) 1000, or 8 in decimal.

Write only is (binary) 0010, or 2 in decimal.

If you specify them both, you specify (binary) 1010 – or 10 in decimal.

They can also be added in decimal. 8+2=10

15

`

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9

8

7

6

5

4

3

2

1

0

L
a

rg
e
 F

ile
 S

u
p

p
o

rt

In
h

e
rit M

o
d

e
 o

f D
ir

C
re

a
te

 a
s
 a

 te
x
t file

R
e

a
d
 a

s
 a

 te
x
t file

S
p

e
c
ify

 a
 c

o
d

e
p

a
g

e

D
o
n

't S
h

a
re

S
h

a
re

 fo
r re

a
d

in
g

/w
ritin

g

S
h

a
re

 fo
r w

rite
 o

n
ly

S
h

a
re

 fo
r re

a
d

 o
n

ly

A
p

p
e

n
d
 a

n
y
 n

e
w

 d
a

ta

T
ru

n
c
a
te

 th
e

 file
 to

 0

b
y
te

s

S
p

e
c
ify

 a
 C

C
S

ID

E
x
c
lu

s
iv

e
ly

 c
re

a
te

C
re

a
te

 th
e

 file
 if n

e
e

d
e

d

O
p

e
n

 fo
r re

a
d

 a
n

d
 w

rite

O
p

e
n

 fo
r w

ritin
g

 o
n

ly

O
p

e
n

 fo
r re

a
d

in
g

 o
n
ly

O
_
L

A
R

G
E

F
IL

E

O
_

IN
H

E
R

IT
M

O
D

E

O
_

T
E

X
T

_
C

R
E

A
T

O
_
T

E
X

T
D

A
T

A

O
_
C

O
D

E
P

A
G

E

O
_

S
H

A
R

E
_

N
O

N
E

O
_

S
H

A
R

E
_

R
D

W
R

O
_

S
H

A
R

E
_

W
R

O
N

L
Y

O
_

S
H

A
R

E
_

R
D

O
N

L
Y

O
_

A
P

P
E

N
D

O
_

T
R

U
N

C

O
_

C
C

S
ID

O
_

E
X

C
L

O
_

C
R

E
A

T

O
_

R
D

W
R

O
_

W
R

O
N

L
Y

O
_

R
D

O
N

L
Y

More flags to use with the open() API

16

Open flags in IFSIO_H

Numbers in RPG are specified as decimal numbers. The
easiest way to keep them straight is to code them as named
constants in a separate member, and use /copy to bring
them into your code. The following are some of the
constants that I've defined in the IFSIO_H source member.

* 00000000000000000000000000000001 Reading Only
D O_RDONLY C 1
* 00000000000000000000000000000010 Writing Only
D O_WRONLY C 2
* 00000000000000000000000000000100 Reading & Writing
D O_RDWR C 4
* 00000000000000000000000000001000 Create File if needed
D O_CREAT C 8
* 00000000000000000000000000010000 Exclusively create --
* open will fail if it
* already exists.
D O_EXCL C 16
* 00000000000000000000000000100000 Assign a CCSID to new
* file.
D O_CCSID C 32
* 00000000000000000000000001000000 Truncate file to 0 bytes
D O_TRUNC C 64
* 00000000000000000000000100000000 Append to file
* (write data at end only)
D O_APPEND C 256

17

Why Adding Works...

When you include these definitions in your source, you can add
them together to specify the options that you want:

flags = O_CREAT + O_TRUNC + O_WRONLY;
74 = 8 + 64 + 2

O_WRONLY 10
O_CREAT 1000
O_TRUNC + 1000000

total 1001010
(Which is decimal 74!)

O_WRONLY 2
O_CREAT 8
O_TRUNC + 64

total 74
(Which is binary 1001010!)

Binary Decimal

• The only way you can get 74 is by adding these 3 flags
• Specifying VALUE on the prototype makes it possible for you to use an expression

// these flags will be totaled first, then the total
// value of 74 will be passed as a parm to the API

fd = open(name: O_CREAT+O_TRUNC+O_WRONLY: M_RDWR);

18

The MODE (Authority) Parameter

The Mode parameter
• The bits of this parm represent the file's authorities

• The MODE parameter is only used when creating a new file

• This parameter is only required if you specify the O_CREAT
open flag

• An IFS file is owned by both a user and a group

• You specify separate authorities for the user, group and public

Owner Group Public

256 128 64 32 16 8 4 2 1

R W X R W X R W X

19

Mode Flags in IFSIO_H

Since I only use a few different file permission modes, I like to
specify named constants for the ones that I use.

D M_RDONLY C const(292)
D M_RDWR C const(438)
D M_RWX C const(511)

M_RDWR is 438 because:
Owner read & write 128 + 256 = 384

Group read & write 32 + 16 = 48

Public read & write 4 + 2 = 6

total 438

These are the “normal” flags if you want to specify each bit individually:

D S_IRUSR C 256
D S_IWUSR C 128
D S_IXUSR C 64

D S_IRGRP C 32
D S_IWGRP C 16
D S_IXGRP C 8

D S_IROTH C 4
D S_IWOTH C 2
D S_IXOTH C 1

20

CCSID and TXTCREATID parameters

The CCSID parameter
• This is the CCSID that will be assigned to a new file

• This parameter is only used with O_CCSID or O_CODEPAGE

• For new files, it is the CCSID the file is tagged with

• With O_TEXTDATA, it's also the CCSID of the data supplied

(unless the V5R2 flag, O_TEXT_CREAT, is also given)

• In V4R5 and earlier, this is a code page, not a full CCSID

The TXTCREATID parameter
• Only available in V5R2 and later

• Specifies the CCSID of the data if the file is created

• Only used when O_TEXT_CREAT is specified

• O_TEXT_CREAT requires O_CCSID, O_CREAT and

O_TEXTDATA to be specified

When used with the O_TEXTDATA and O_CCSID flags, these parms can

be used to automatically translate ASCII to EBCDIC or vice-versa.

21

More about CCSIDs

Some CCSIDs that I use are:

fd = open('/tmp/ccsid_test.txt'

: O_CREAT+O_CCSID+O_WRONLY

: M_RDWR

: 819);

37 EBCDIC for US, Canada, Netherlands, Portugal, Brazil, New
Zealand, Australia

285 EBCDIC for United Kingdom

819 ISO 8859-1 ASCII

1252 ASCII used by Windows for Latin-1 alphabets

1208 UNICODE UTF-8 (Requires V5R1 and O_CCSID – not
O_CODEPAGE)

This assigns CCSID 819 when the file is created:

22

Examples of open() with CCSIDs

The following will create a file and translate any data written to ASCII:

file1 = open('/hr/payroll/weekly_nacha.dat'
: O_WRONLY + O_CREAT + O_TRUNC + O_CCSID
: M_RDWR
: 819);

callp close(file1);

file1 = open('/hr/payroll/weekly_nacha.dat'
: O_WRONLY + O_TEXTDATA);

Note that the translation might not be right if the file already exists. CCSID is only

assigned if the file is created. If you want to be sure, delete the file first:

unlink('/hr/payroll/weekly_nacha.dat');

file2 = open('/hr/payroll/weekly_nacha.dat'
: O_WRONLY + O_CREAT + O_TRUNC + O_CCSID
+ O_TEXTDATA + O_TEXT_CREAT

: M_RDWR
: 819
: 0);

In V5R2, the O_TEXT_CREAT flag lets you do the same thing in a single call to the
open() API. When you specify a CCSID of 0, it means “the current job's CCSID.”

23

The write() API

The write() API writes data from the computer's memory to the file.

The prototype for the write() API is in the IFSIO_H /copy member, and
looks like this:

D write PR 10I 0 ExtProc('write')
D fildes 10i 0 value
D buf * value
D bytes 10U 0 value

The parameters of the write() API are:

• Fildes = the descriptor that was returned by open()

• buf = pointer to memory where data to write resides

• bytes = number of bytes of memory to write

The write() API returns the length of the data written, or –1 if an error
occurs.

len = write(file2: %addr(data): %len(data));

if (len < 1);
// ack! It failed!

endif;

24

Writing Different Data Types

Since the data to write is specified by a pointer, you are not
limited to writing text.

D myPacked s 9P 2

callp write(fd: %addr(myPacked): %size(myPacked));

D writeA PR 10I 0 ExtProc('write')
D fildes 10i 0 value
D buf 65535A const options(*varsize)
D bytes 10U 0 value

Beware! Translating packed or other data types to ASCII
might cause them to be difficult to read. Non-text should
never be written to a file when O_TEXTDATA is supplied.

If you're not comfortable with pointers, it's possible to prototype
the write() API so that you don't need to use them:

D text 100A

callp writeA(fd: text: %len(%trimr(text)));

25

One More Write Example

• This prototype works because passing a parameter by reference is the same
thing, under the covers, as passing a pointer to that parameter by value.

• Options(*VARSIZE) makes it possible to pass strings of any length. Since the API
determines the length from the 3rd parameter, any size variable is possible.

• The const keyword tells the compiler that the API won't change the value that's
passed. This is helpful because it lets the compiler do some of the work. You
can now pass an expression or VARYING field and let the compiler convert it to
something the API will understand.

D CRLF c x'0d25'
D fd s 10I 0
D html s 500A varying

html =
'<html>' + CRLF +
' <head>' + CRLF +
' <title>This is a test</title>' + CRLF +
' </head>' + CRLF +
' <body>' + CRLF +
' <h1>This is a test HTML file</h1>' + CRLF +
' </body>' + CRLF +
'</html>' + CRLF ;

writeA(fd : html : %len(html));

The writeA() prototype works very nicely with VARYING fields:

26

The read() API

The read()API reads data from a file in the IFS to memory. It's
parameters, shown below, are very similar to that of the write() API.

D read PR 10I 0 ExtProc('read')
D fildes 10i 0 value
D buf * value
D bytes 10U 0 value

The parameters of the read()API are:

• Fildes = the descriptor that was returned by open()

• buf = pointer to memory that data will be stored in

• bytes = maximum amount of data the API can read on this call
(Make sure this value is never larger than your variable!)

The read() API returns the length of the data read. That length will be
shorter than the bytes parameter if the end of the file was reached.

The API will return –1 if an error occurs.

27

Block Read Example

f = open('/home/klemscot/demo.data': O_RDONLY+O_TEXTDATA);
if (f < 0);

// oh no! not again! ahhhhhhh!
endif;

len = read(f : %addr(data) : %size(data));

if (len < %size(data));
msg = 'Only ' + %char(len) + ' bytes were found!';

endif;

callp close(f);

This works well for a fixed-length chunk of data, but…

• It won't work for a CR/LF style record!

• It always reads as much data as will fit (unless it reaches the end

of the file) so how can you read until you get a CR/LF sequence?

You can read a fixed-length record from an IFS file like this:

28

Reading Text Files

// because line is varying, the max length is two less than
// it's size in bytes.

LineMax = %size(line) - 2;

dow (read(fd : %addr(char) : 1) = 1);

if (char<>CR and char<>LF);
line = line + char;

endif;

if (char=LF or %len(line)=LineMax);
except PrintLine;
Line = '';

endif;

enddo;

You can read one character at a time from a file in the IFS until you get

a line feed character.

Although this method works, it's not very efficient. For some better
alternatives, check out my web site, or the article "Text File Primer"
from December 2004 issue of System iNEWS.

29

The close() API

D close PR 10I 0 ExtProc('close')
D fildes 10I 0 value

When you're done with a file, you close it by calling the close() API.

Close API parameters:

• fildes = file descriptor to close (returned by the open() API)

You should always close a file when you're done with it. It won't automatically
be closed when the program ends. However, if the activation group is
destroyed, or your job ends, the file will be closed.

Like most Unix-type APIs, close()will return a –1 if an error occurs. That's not

very helpful, is it?

What can you do if the file won't close? Even though this returns a value, you
can ignore that value by calling it with the CALLP opcode.

callp close(fd);

30

Handling Errors

The APIs return –1 when an error occurs. Checking this value tells

you that an error occurred, but it does not tell you what the error was!

The Unix-type APIs return error information by setting the value of a

variable in the ILE C runtime library called “errno.”

The __errno() function can be used to get a pointer to the error number.

D get_errno pr * ExtProc('__errno')

D ptrToErrno s *
D errno s 10I 0 based(ptrToErrno)

/free

fd = open('/DirThatDoesntExist/hello.txt'
: O_CREAT+O_TRUNC+O_WRONLY: M_RDWR);

if (fd < 0);
ptrToErrno = get_errno();
msg = 'open failed with error number ' + %char(errno);
dsply msg '' wait;
return;

endif;

The error number will match a CPE message in the QCPFMSG message file.
For example, If errno = 3021, then type DSPMSGD CPE3021 to get more info.

31

Nicer Error Messages

The strerror() function can be used to get a text message for

an error number.

D strerror pr * ExtProc('strerror')
D errno_val 10I 0 value

msg = %str(strerror(errno));

Note: In order to get errno or call the strerror() function, you

must tell your program to bind to the ILE C runtime library.

On the H-spec:

H BNDDIR('QC2LE')

Additional binding directories can be listed on the same statement:

H BNDDIR('QC2LE': 'OTHERDIR': 'MYBNDDIR')

32

Error Constants

• Each errno value corresponds to a constant

• The following is a small sampling of constants that correspond to errno

* Permission denied.
D EACCES C 3401
* Not a directory.

D ENOTDIR C 3403
* No space available.

D ENOSPC C 3404
* Improper link.

D EXDEV C 3405

• These constants are listed in the API manuals instead of the actual numbers

• I've included my definitions of these constants in the ERRNO_H source member,
available from my Web site. http://www.scottklement.com/presentations/

• The constants work nicely in programs for handling “expected errors”

/copy ERRNO_H

ptrToErrno = get_errno();

select;
when errno = EACCES;

// handle "user doesn't have authority"
// by send a message to the security officer.

other;
// handle other errors here.

33

Reading Directories

• Reading the contents of an IFS directory requires 3 APIs

• They are OpenDir(), ReadDir() and CloseDir()

• A fourth API called rewinddir() can be used to re-read the directory from the start

• The prototypes for these APIs are in the IFSIO_H member, and are listed below:

D opendir PR * EXTPROC('opendir')
D dirname * VALUE options(*string)

D readdir PR * EXTPROC('readdir')
D dirp * VALUE

D rewinddir PR ExtProc('rewinddir')
D dirp * value

D closedir PR 10I 0 EXTPROC('closedir')
D dirp * VALUE

Opendir() opens up a directory, just as open() opens a file.

• Dirname = directory name to open. Notice options(*string)!

• Opendir() returns pointer to a “directory handle.” It works like a descriptor.
You pass it to the other APIs.

• Opendir() returns *NULL if an error occurs, and errno can be checked.

The “dirp” parameter to the other APIs is the pointer that opendir() returned.

34

Directory Entries

The readdir() API returns a pointer to a “directory entry” data structure.

• This data structure works nicely with QUALIFIED and LIKEDS

• The following definition is in the IFSIO_H member that is included on my site

D dirent ds qualified
D BASED(Template)
D d_reserv1 16A
D d_fileno_gen_id...
D 10U 0
D d_fileno 10U 0
D d_reclen 10U 0
D d_reserv3 10I 0
D d_reserv4 8A
D d_nlsinfo 12A
D d_nls_ccsid 10I 0 OVERLAY(d_nlsinfo:1)
D d_nls_cntry 2A OVERLAY(d_nlsinfo:5)
D d_nls_lang 3A OVERLAY(d_nlsinfo:7)
D d_namelen 10U 0
D d_name 640A

Usually there are two useful bits of informaton in a directory entry:

• The d_name and d_namelen fields are useful for getting the file names

• The d_nls_ccsid field is useful for determining the CCSID of the file name.

The d_name field is defined as 640 chars long, but most file names aren't that long. The unused part of it
will not be blank-filled. You have to use d_namelen to retrieve the “good part.”

35

Directory Example (1 of 3)

The following is a sample program that illustrates the directory APIs

H DFTACTGRP(*NO) BNDDIR('QC2LE')

FQSYSPRT O F 132 PRINTER

/copy ifsio_h

d dirh s *
d p_entry s *
d entry ds likeds(dirent)
d based(p_Entry)
D name s 132A
D shortname s 52A
D msg s 132A

D strerror pr * ExtProc('strerror')
D errno_val 10I 0 value
D get_errno pr * ExtProc('__errno')
D p_errno s *
D errno s 10I 0 based(p_errno)

Notice the following:
• The dirh pointer will be used for the directory handle.

• The entry data structure is defined with LIKEDS() to get the same fields as dirent.

• The entry data structure is based on the p_entry pointer.

• The definitions for errno & strerror are included.

36

Directory Example (2 of 3)

The following is a sample program that illustrates the directory APIs

/free

// --
// open a directory.
// --

dirh = opendir('/QIBM/UserData');

if (dirh = *NULL);
p_errno = get_errno();
msg = 'opendir(): ' + %str(strerror(errno));
except error;
*inlr = *on;
return;

endif;

Notice the following:

• If dirh is null. An error occurred.

• Like all Unix-type APIs, this uses errno and strerror() to get info about the error.

• I end the program immediately after printing the error message.

37

Directory Example (3 of 3)

After reading the entries once, I can re-read them with rewinddir()

// --
// read entries and print them
// --

p_entry = readdir(dirh);

dow (p_entry <> *NULL);

name = %subst(entry.d_name: 1: entry.d_namelen);
except print;

p_entry = readdir(dirh);
enddo;

// --
// read entries again, this time dsply them
// --

rewinddir(dirh);

p_entry = readdir(dirh);
dow (p_entry <> *NULL);

shortname = %subst(entry.d_name: 1: entry.d_namelen);
dsply shortname;
p_entry = readdir(dirh);

enddo;

callp closedir(dirh);

38

Check if a file exists

The access() API can check if a file exists in the IFS.

It can also check if the current user has read, write or execute authority.

D F_OK C 0
D R_OK C 4
D W_OK C 2
D X_OK C 1

D access PR 10I 0 ExtProc('access')
D Path * Value Options(*string)
D amode 10I 0 Value

somefile = '/home/scottk/ramble.txt';

if (access(%trimr(somefile) : F_OK) = 0);
msg = 'File exists!';

endif;

if (access(%trimr(somefile) : R_OK + W_OK) = 0);
msg = 'You have read & write authority!';

endif;

39

Get File Information (1 of 2)

The stat() API gets information about a file in the IFS

D stat PR 10I 0 ExtProc('stat')
D path * value options(*string)
D buf likeds(statds)

D statds DS qualified
D BASED(Template)
D st_mode 10U 0
D st_ino 10U 0
D st_nlink 5U 0
D st_reserved2 5U 0
D st_uid 10U 0
D st_gid 10U 0
D st_size 10I 0
D st_atime 10I 0
D st_mtime 10I 0
D st_ctime 10I 0
D st_dev 10U 0
D st_blksize 10U 0
D st_allocsize 10U 0
D st_objtype 11A
D st_reserved3 1A
D st_codepage 5U 0
D st_ccsid 5U 0
D st_rdev 10U 0
D st_nlink32 10U 0
D st_rdev64 20U 0
D st_dev64 20U 0
D st_reserved1 36A
D st_ino_gen_id 10U 0

40

Get File Information (2 of 2)

The first parm is the path name of the file you want information for.

The second parm is the data structure that the information will be
returned in.

The return value will be 0 if it's successful, or –1 if there's an error.

D filename s 1000A varying
D filestats ds likeds(statds)

filename = '/tmp/hello.txt';

rc = stat(filename: filestats);
if (rc < 0);

// check errno
endif;

msg = filename + ' is ' + %char(filestats.st_size) +
' bytes long.';

41

Other Useful APIs

The chmod() API can change the authorities on an existing file

D chmod PR 10I 0 ExtProc('chmod')
D path * Value options(*string)
D mode 10U 0 Value

rc = chmod('/home/scottk/ramble.txt': M_RDONLY);
if (rc < 0);

// check errno
endif;

D mkdir PR 10I 0 ExtProc('mkdir')
D path * Value options(*string)
D mode 10U 0 Value

rc = mkdir('/home/scottk/testdir': M_RWX);
if (rc < 0);

// check errno
endif;

The mkdir() API creates a new directory

42

Other Useful APIs, continued…

The unlink() API deletes an existing file

D unlink PR 10I 0 ExtProc('unlink')
D path * Value options(*string)

somefile = '/QNTC/SERVER4/scott/oldjunk.dat';
rc = unlink(%trimr(somefile));

if (rc < 0);
// check errno

endif;

D rmdir PR 10I 0 ExtProc('rmdir')
D path * Value options(*string)

rc = rmdir('/home/scottk/tempdir');
if (rc < 0);

// check errno
endif;

The rmdir() API deletes an existing directory

43

For more information...

The IFS APIs are documented in the IBM Knowledge Center under:
• Programming / APIs / APIs By Category / Unix-Type APIs / Integrated File System APIs.
• The documentation assumes a C programmer, but works fine in RPG
• IBM provides some prototypes in QSYSINC library (System Openness Includes)
• Others are available from my web page.

Scott's web site has a tutorial (fixed-format RPG with V4 level code)
• http://www.scottklement.com/
• Click “RPG” then “Reading & Writing from the Integrated File System”

Who Knew You Could Do That with RPG IV?

A Sorcerer's Guide to System Access and More

• The RPG redbook contains information on IFS programming and much more.

• http://www.redbooks.ibm.com/abstracts/sg245402.html

44

This Presentation

You can download a PDF copy of this presentation, and get
the IFSIO_H and ERRNO_H copy members from:

http://www.scottklement.com/presentations/

Thank you!

