
Consuming Web Services from RPG

with HTTPAPI

Presented by

Scott Klement
http://www.scottklement.com

© 2004-2021, Scott Klement

“There are 10 types of people in the world.

Those who understand binary, and those who don’t.”

2

1. Introduction

• What's a web service?

• Consuming vs. Providing

• Types (REST/SOAP/XML/JSON)

2. Consuming a Web Service w/Utility

3. What is HTTPAPI? What are alternatives?

4. Example- Simple Web Service

5. Example- REST Web Service

6. Example- SOAP web service

Our Agenda

3

What is a Web Service?

• ”API” refers to a program that has no user interface and

is meant to be called by other programs

• Input comes from “parameters”

• Output is returned in “parameters”

• They provide a “service” for their caller

• Can be called on the local machine, LAN, WAN or

Internet (at provider’s discretion)

An API call using internet-type communications

4

What is…. Example scenarios

• Web server on Linux needs data from IBM i program to determine when a

work order will be complete. Calls RPG program, gets result. Shows

result to end-user.

• Green-screen application needs to process credit cards. Calls bank’s

computer, passes card info, gets back confirmation number.

• Application needs exchange rate to convert US dollars to Euros. Calls

program on bank’s computer to get it.

• Track packages with UPS, DHL, USPS, FedEx, etc.

• Integrate CRM application on Windows Server in San Diego, CA with

Billing Application on IBM i in Milwaukee, WI

• Mobile app sold in Google Play or Apple App Store needs access to data

on IBM I

• Application has text in English, but needs it in Spanish. Calls Web Service,

passes English text, gets back Spanish.

5

Consuming vs. Providing

• Provider = program that provides a service (the “server”

side of communications). This is the API.

• Consumer = program that makes the call (the “client”

side of communications.). This calls the API.

In Web Services, these terms are important:

This session focuses on consuming (not providing) web services.

6

Identify Consumer vs. Provider

• Web server on Linux needs data from IBM i program to determine
when a work order will be complete. Calls RPG program, gets
result. Shows result to end-user.

• Green-screen application needs to process credit cards. Calls
bank’s computer, passes card info, gets back confirmation
number.

• Application needs exchange rate to convert US dollars to Euros.
Calls program on bank’s computer to get it.

• RPG Program tracks packages with UPS, DHL, USPS, FedEx,
etc.

• Integrate CRM application on Windows Server in San Diego, CA
with Billing Application on IBM i in Milwaukee, WI

• Mobile app sold in Google Play or Apple App Store needs access
to data on IBM I

• Application has text in English, but needs it in Spanish. Calls Web
Service, passes English text, gets back Spanish.

Consumers
are in Red

Providers
are In blue

7

Internet-type Communications

• I really meant “HTTP”.

• That’s really the only “web” part about

”web services”

• Is not the same as a web page (does

not have a UI)

• A web browser is not used.

• Can be consumed by a web page, but

doesn’t have to be!

• Can be a green-screen application,

mobile application, Windows

application, etc.

• Always platform/language agnostic.

Can be called from anywhere.

8

Translation Example

We want to translate text from English to Spanish.

Remember: We’re making a program call using HTTP

Input parameters:

model_id = 'en-es’; // translate English(en) to Spanish(es)

text = 'Hello’; // text to translate

Output parameter:

Translated text: 'Hola’

You can think of it like this:

CALL PGM(TRANSLATE) PARM('en-es' 'Hello' &RESULT)

How Does It Really Work?

9

HTTP starts with a request for the server

• Can include a document (XML, JSON, etc)

• Document can contain "input parameters"

HTTP then runs server-side program

• input document is given to program

• HTTP waits til program completes.

• program outputs a new document (XML, JSON, etc)

• document contains "output parameters"

• document is returned to calling program.

Result = hola

model_id=en-es

text=Hello

10

How Can We Try It Out?

• Web services are for program-to-program communication

• Normally, to use them, you must write a program!

• A web service testing tool allows testing without writing a

program.

• Soap UI is a great (highly recommended) testing tool

• Available in "Open Source" and "Professional" versions

• Scott uses the open source (free) version.

• Despite the name, can test REST as well as SOAP services

http://www.soapui.org

11

Setting It Up in SoapUI

• Use a REST web

service.

• Provide the URL

from IBM Cloud for

the Language

Translator

Note: This URL is too long to appear on the screen, but the box scrolls left/right to fit it all.

The full URL is

http://gateway.watsonplatform.net/language-translator/api/v3/translate?version=2018-05-01

12

Authorizing SoapUI

Watson requires you to have an account set up on IBM Cloud that is used to run this service.

In SoapUI you can put your login credentials (usually 'apikey' for the userid plus your password) under 'Auth'

at the bottom.

13

Trying It Out in SoapUI

• Use the "method"

dropdown to pick

"POST"

• Make sure the

media type is

"application/json"

• Type the

parameters in

JSON format into

the box

• Click the green

"Play" button

(upper-left) to run

it.

14

Results

• On the right you have

tabs to view the result

as "Raw", "HTML",

"JSON" or "XML

• Watson services use

JSON (as do most

newer APIs)

• The result is shown in

the box.

{

"translations": [{

"translation": "Hola"

}],

"word_count": 1,

"character_count": 5

}

15

What Just Happened?

• IBM Watson provides a language translation web service

• Soap UI is a testing tool that can consume web services

• We used the HTTP protocol

• Called IBM's "v2 translation" program

• Passed the languages to translate from/to.

• Passed the text to translate

• Got back the translated text

16

IBM Watson Language Translation

Not Really REST?

• Does not use the URL to identify a "resource"

• Does not use GET/PUT/POST/DELETE to determine what to do to the

resource

• Purists would say it's not "REST", but a lot of people (most people?) now

consider anything REST that is simple to use, like the Watson/IBM Cloud

example.

Using It Yourself

• Fully supports commercial use

• First 250k of data translated for free

• After that, they charge per 1000 characters. Very inexpensive!

https://www.ibm.com/cloud-computing/bluemix/watson

17

HTTPAPI

Open Source (completely free tool)

• Created by Scott Klement, originally in 2001

• Written in native RPG code

• Enables HTTP communication from your ILE RPG programs

• http://www.scottklement.com/httpapi

2017 Updates

• Easier to use. Easier string support. Better HTTP method support.

Alternatives

• DB2 SQL HTTPGETCLOB, HTTPPOSTCLOB, etc functions

• IBM provides a SOAP (only) client in IWS

• 3rd party tools like GETURI

18

Language Translation in RPG

http_setAuth() – sets the userid/password used.

http_string() – sends an HTTP request, getting the input/output from strings

DATA-INTO – RPG opcode for parsing documents such as JSON

request, url and response are standard RPG VARCHAR fields. (CHAR would also work)

http_setAuth(HTTP_AUTH_BASIC: 'apikey': '{your-api-key}');

request = '{"text":["Hello"],"model_id":"en-es"}';

url = 'https://gateway.watsonplatform.net/language-translator/api'

+ '/v3/translate?version=2018-05-01

response = http_string('POST': url: request: 'application/json');

DATA-INTO result %DATA(response) %PARSER('YAJLINTO');

19

Running the Program

For example, the data from this screen can be fed into the code from the last slide.

The output of the last slide can be placed under "To Text".

20

Types of Web Services

REST

• Most popular paradigm in the world (69% of all services and growing)

• URL represents a "resource"

• You can retrieve, create, modify or delete the resource

• Data can be in any format, but JSON is most popular, followed by XML

• The term "REST" is often applied to any simple web service (one that does

not follow a complex standard like SOAP or XML-RPC)

SOAP

• Popularity peaked around 2004 (was 90%, now only 22% and shrinking)

• Highly standardized XML, requires more bytes, complexity

• Always uses the POST HTTP method

• Works well with tooling

• Too complicated to use without tooling

21

Types of Web Services

Data from ProgrammableWeb in 2014

Note: In 2004, SOAP was around 90%

In 2009, SOAP and REST were about even.

Both XML and JSON are widely used in web services:

• Self-describing.

• Can make changes without breaking compatibility

• Available for all popular languages / systems

XML:

• Has schemas, namespaces, transformations, etc.

• Has been around longer.

• Only format supported in SOAP

JSON:

• Natively supported by all web browsers

• Results in smaller documents (means faster network transfers)

• Parses faster.

22

Data Formats (XML and JSON)

23

JSON and XML to Represent a DS

Array of data structures
in RPG…

Array of data structures
in JSON

Array of data structures
in XML

D list ds qualified

D dim(2)

D custno 4p 0

D name 25a

[

{

"custno": 1000,

"name": "ACME, Inc"

},

{

"custno": 2000,

"name": "Industrial Supply Limited"

}

]

<list>

<cust>

<custno>1000</custno>

<name>Acme, Inc</name>

</cust>

<cust>

<custno>2000</custno>

<name>Industrial Supply Limited</name>

</cust>

</list>

24

Without Adding Spacing for Humans

87 bytes

142 bytes

In this simple "textbook" example, that's a 35% size reduction.

55 bytes doesn't matter, but sometimes these documents can be

megabytes long – so a 35% reduction can be important.

…and programs process JSON faster, too!

[{"custno":1000,"name":"ACME, Inc"},{"custno":2000,

"name":"Industrial Supply Limited"}]

<list><cust><custno>1000</custno><name>ACME, Inc</name

></cust><cust><custno>2000</custno><name>Industrial S

upply Limited</name></cust></list>

25

Customer Maintenance Example

• The Watson example wasn't "real" REST, it was just a simple web service

that played by it's own rules.

• For a "real" REST example, I have a Customer Maintenance web service

on my IBM i. It is a demo web service that I wrote. You can download the

full source code for both the provider and green-screen consumer from my

web site.

• The purpose is to let sales people view, add and change customer

information.

• Used a web service (instead of database directly) so we can have mobile,

web and green-screen applications that all share the same back-end

program.

• This web service happens to support both xml and json.

• The business logic is VERY simple, but it provides a good demonstration of

REST web service mechanics.

26

What Is Meant By "Real" REST?

A REST "purist" would tell you that REST is where the URL specifies a

"resource" (something to operate on) an the HTTP method specifies what to

do.

http://my-server/webservices/cust/1234

• GET = Retrieve the resource (get customer 1234)

• PUT = Make idempotent changes (update customer 1234)

• POST = Make non-idempotent changes (write customer 1234)

• DELETE = Removes the resource (delete customer 1234)

Idempotent means that multiple calls will result in the same thing. For example, if you
set a customers "balance" to 10, it does not matter if you do it once or 100 times, the
end result will be a balance of 10. However, if you add 10 to their balance, it is not
idempotent. If you do it once, it's 10 higher, do it 100 times, it's 1000 higher.

27

REST/CRUD analogy

An easy way to understand "real" REST is to think of it like Create, Retrieve,

Update, Delete (CRUD) database operations.

http://my-server/webservices/xml/cust/1234

• URL = an identifier, like a "unique key" (identity value) that identifies a

record. (But also identifies what type of record, in this case, a customer.)

• GET = Retrieves – much like RPG's READ opcode reads a record

• PUT = Modifies – much like RPG's UPDATE opcode

• POST = Creates – much like RPG's WRITE opcode (or SQL INSERT)

• DELETE = Removes – like RPG's DELETE

Consider the difference between writing a record and updating it. If you update it 100
times, you still have the one record. If you write (insert) 100 times, you have 100
records. That is idempotent vs. non-idempotent.

28

Cust Maint – Start Screen

The customer maintenance program starts by letting the user select a

customer.

29

Retrieving All Customers

dcl-c BASEURL 'http://localhost:8500/webservices/xml/cust';

dcl-s xmlData varchar(100000);

xmlData = http_string('GET' : BASEURL);

GET http://my-server/webservices/xml/cust

That list did not come (directly) from a database – it came from consuming the web
service!

This web service returns a list of all customers when you do a GET request and do not
provide a customer number.

• HTTP GET is the REST for "retrieve"

• The "resource" in this is "customers in general" since no specific number

was given.

• http_string() routine receives data into a string (vs. a file).

• The first parameter is the HTTP method (GET)

• xmlData will be the XML document (all customers) as a string.

30

Think of XML Like a Data Structure

Think of XML like a data structure, it’s one larger field (such as “address”) that

contains sub-fields (such as “street”, “city”, “state” and “postal”)

It’d be helpful to be able to load the RPG DS from the XML.

dcl-ds address;

street varchar(30);

city varchar(20);

state char(2) ;

postal varchar(10);

end-ds;

<address>

<street> 123 Main Street </street>

<city> Anywhere </city>

<state> WI </state>

<postal> 12345 </postal>

</address>

That’s what XML-INTO does!

• Maps XML fields into corresponding DS fields

• Field names must match (special characters can be mapped into

underscores if needed)

• Repeating elements can be loaded into arrays

31

The List of Customers Looks Like This

The XML returned from the service looks like this. RPG's built-in XML-INTO

opcode can easily put this data into a data structure.

32

Data Structure Definition

dcl-ds cust qualified;

success ind inz(*on);

errorMsg varchar(500) inz('');

num_data int(10) inz(0);

dcl-ds data dim(999);

custno packed(5: 0) inz(0);

name varchar(30) inz('');

dcl-ds address;

street varchar(30) inz('');

city varchar(20) inz('');

state char(2) inz(' ');

postal varchar(10) inz('');

end-ds;

end-ds;

end-ds;

xml-into cust %xml(xmlData:'case=convert countprefix=num_ ');

• This RPG data structure has the same definition as the XML in our web service.

• “data” is an array that can have up to 999 addresses.

• XML-INTO’s “countprefix” can tell us how many were found

“num_data” is “data” with the “num_” count prefix added, so RPG will count the number
of “data” array elements, and put it into “num_data”

33

Loading the List Into the Subfile

dcl-ds cust likeds(cust_t) inz(*likeds);

xml-into cust %xml(xmlData:'case=convert countprefix=num_');

clearSfl();

for i = 1 to cust.num_data;

custno = cust.data(i).custno;

name = cust.data(i).name;

street = cust.data(i).address.street;

city = cust.data(i).address.city;

state = cust.data(i).address.state;

postal = cust.data(i).address.postal;

opt = *blanks;

RRN += 1;

recsLoaded = RRN;

write SFL;

dspf.sfldsp = *on;

endfor;

The XML-INTO simply puts the
XML data into the matching

data structure.

To load the subfile, I can just
loop through the array of

"data" elements and load it.

34

Maintenance Screen

When you select a customer, it displays this screen

To use this screen (via REST)
the program must:

Make (another) GET request
with the custno to get a specific
customer's data. (Cust 495 in

this example.)

After the user's changes, it
must make a POST request to
update the customer. (Or PUT

if it is a new customer.)

35

Retrieve Specific Customer

dcl-c BASEURL 'http://localhost:8500/webservices/xml/cust';

dcl-s xmlData varchar(5000);

xmlData = http_string('GET' : BASEURL + '/' + %char(custno));

GET http://my-server/webservices/xml/cust/XXXXX

To retrieve information about a customer (name, address, etc)

In RPG (with HTTPAPI) the code looks like this:

This is exactly like the previous example, except:

• A slash and customer number are added to the URL.

• xmlData can be smaller because only one record will be returned.

36

Populating the Maintenance Screen

dcl-ds orig likeds(data_t) inz(*likeds);

xml-into cust %xml(xmlData:'case=convert countprefix=num_');

// If there was an error, put it on the screen

if cust.success <> 'true';

msg = cust.errorMsg;

endif;

// If no error, put the cust data on the screen.

if cust.success = 'true';

custno = cust.data(1).custno;

name = cust.data(1).name;

street = cust.data(1).address.street;

city = cust.data(1).address.city;

state = cust.data(1).address.state;

postal = cust.data(1).address.postal;

eval-corr orig = cust.data(1);

endif;

The exact same data
structure is used for XML-

INTO

The only difference is that
there will be only 1 <data>

element (only one
customer)

Just copy element 1 to the
screen fields…

Also save an "orig" copy of
the data so we can tell what

was changed.

NOT SHOWN: If the user hit
F10 = new customer, we

skip this and just blank out
the screen fields and "orig"

37

We Send XML For Updates

When doing a POST/PUT to save the changes, we send an XML document.

The format the XML is the same, except:

• It is generated by the consumer (we have to create it)

• Only the fields that were changed are sent.

• In this example, the street address, city and state were changed:

38

Creating XML in RPG

dcl-s data varchar(5000);

data = '<?xml version="1.0"?>+

<cust success="true"><data>';

if name <> orig.name;

data += '<name>' + xml(name) + '</name>';

endif;

data += '<address>';

if street <> orig.address.street;

data += '<street>' + xml(street) + '</street>';

endif;

... above repeated for each field ...

data += '</address>';

data += '</data></cust>';

RPG does not have an
opcode to create XML.

…but, it is not hard to
create XML with string

concatenation!

The only tricky part is
what about special

characters in the data,
like <, > or &?

For that, I wrote the xml()
subprocedure (next

slide)

When "New Customer"
was selected, orig is

blank.

39

Escaping Special Characters

dcl-proc xml;

dcl-pi *n varchar(5000);

inp varchar(5000) const options(*varsize);

end-pi;

dcl-s x int(10);

dcl-s result varchar(5000);

for x = 1 to %len(inp);

select;

when %subst(inp:x:1) = '&';

result += '&';

when %subst(inp:x:1) = '<';

result += '<';

when %subst(inp:x:1) = '>';

result += '>';

when %subst(inp:x:1) = '"';

result += '"';

when %subst(inp:x:1) = '''';

result += ''';

other;

result += %subst(inp:x:1);

endsl;

endfor;

return %trim(result);

end-proc;

For example, input like
"Gravity < Zero"

Will be escaped like
"Gravity < Zero"

40

Sending Changes To Provider

if isNew;

method = 'POST';

url = BASEURL;

else;

method = 'PUT';

url = BASEURL + '/' + %char(custno);

endif;

monitor;

http_string(method: url: data: 'text/xml');

on-error;

msg = http_error();

endmon;

F10=New Customer sets
"isNew" indicator.

In that case, no customer
number is given, since it

will be generated.

Remember: PUT is for update, POST is for writing new customer.

http_string() has optional parameters when a document needs to be sent.

• 3rd parameter is the data to send

• 4th parameter identifies the type of the data sent.

• The server will return the updated customer record (this consumer doesn't

use it, however.)

41

Working With JSON Data

{

"success": true,

"errorMsg": "",

"data": [

{

"custno": 495,

"name": "Acme Foods",

"address": {

"street": "1100 NW 33rd Street",

"city": "Pompano Beach",

"state": "FL",

"postal": "33064-2121"

}

},

{ repeated for each customer }

]

}

The Customer Maintenance Web Service also supports JSON instead of XML.

It works exactly the same, except:

• data is json instead of xml (of course)

• URL is http://your-server/webservices/json/cust

• Type is sent as 'application/json'

42

RPG Does Not Have JSON Opcodes

However, it has DATA-INTO and DATA-GEN!

• DATA-INTO is like XML-INTO, maps a structured document into a DS,

array, etc

• Requires IBM i 7.2 or newer (PTF needed for 7.2 and 7.3)

• A 3rd-party tool that understands the document format is needed

• (free) YAJL open source project has a ‘YAJLINTO’ tool for DATA-INTO

DATA-INTO ResultVariable

%DATA(document: 'options')

%PARSER('3RD-PARTY-PROGRAM': 'options’)

Because RPG doesn’t interpret the document, it’s possible to get a DATA-

INTO parser for any structured format.

• JSON, XML, CSV, Property files, etc

• We’ll use it with YAJLINTO for JSON

43

What is YAJL?

YAJL = Yet Another Json Library

• Very fast JSON reader

• Completely Open Source (free of charge)

• Cross-platform C code written by Lloyd Hilael of Mozilla
• YAJL *SRVPGM = ILE C port of YAJL

• IBM i (ILE RPG) front end by Scott Klement
• YAJLR4 *SRVPGM = ILE RPG front-end

• DATA-INTO interface program
• YAJLINTO *PGM = DATA-INTO parser

Download from Scott’s web site:

http://www.scottklement.com/yajl/

Requires IBM i 6.1 or newer. IBM i 7.2 or newer needed for DATA-INTO

44

Mapping JSON Format

dcl-ds address;

street varchar(30);

city varchar(20);

state char(2) ;

postal varchar(10);

end-ds;

DATA-INTO will do that when used with YAJLINTO (or similar)

• Aside from needing the 3rd party parser, it’s almost identical to XML-INTO

• Options like case=convert and countprefix work here as well

"address": {

"street": "123 Main Street",

"city“: "Anywhere",

"state": "WI",

"postal": "12345"

}

JSON format:

• The { } characters indicate an “object” (same as RPG data structure)

• The [] characters indicate an array

• Just as with XML, we can map them into an RPG structure

45

Retrieving/Processing JSON

dcl-c BASEURL 'http://localhost:8500/webservices/json/cust’;

jsonData = http_string('GET': BASEURL);

data-into cust %DATA(jsonData

: 'case=convert countprefix=num_')

%PARSER('YAJLINTO’);

Communication is still done with HTTPAPI (or an alternative)

• URL is http://your-server/webservices/json/cust

• http_string() receives the JSON data into a variable (instead of XML)

• Here’s the example of retrieving the customer list

• The RPG definition of the “cust” data structure is the same as the XML

version

46

YAJL Can Also Generate JSON

YAJL can also be used with RPG's DATA-GEN opcode to generate JSON

documents.

DATA-GEN was added to RPG in November 2019, via PTFs for 7.3/7.4

• DATA-GEN converts an RPG variable to a corresponding structured document.

In this example, we'll generate a JSON document.

• The first parameter ("factor1") specifies the RPG variable containing the data to

be converted.

• The %GEN BIF controls which program (think of it like a "driver") is used to

generate the document.
‒ YAJLDTAGEN is a %GEN program for generating JSON documents, included with

YAJL. The YAJLDTAGEN program is what determines that the output is JSON (vs.
other formats like XML, YAML, etc.)

• The %DATA BIF specifies the variable the result is placed in

• Many, many other options are available, just scratching the surface., here.

DATA-GEN rpg-variable %DATA(result-variable : options)

%GEN(generator-program : options);

47

RPG Variable That Matches the JSON

dcl-ds cust qualified; // {

success ind inz(*on); // "success": true,

errorMsg varchar(500) inz(''); // "errorMsg": "{string}",

dcl-ds data; // "data": {

num_custno int(10) inz(0);

custno packed(5: 0) inz(0); // "custno": {number},

num_name int(10) inz(0);

name varchar(30) inz(''); // "name": {string},

dcl-ds address; // "address": {

num_street int(10) inz(0);

street varchar(30) inz(''); // "street": "{string}",

num_city int(10) inz(0);

city varchar(20) inz(''); // "city": "{string}",

num_state int(10) inz(0);

state char(2) inz(' '); // "state": "{string}",

num_postal int(10) inz(0);

postal varchar(10) inz(''); // "postal": "{string}"

end-ds; // }

end-ds; // }

end-ds; // }

DATA-GEN is basically DATA-INTO in reverse. You provide an RPG variable, and it
creates JSON that matches that variable's layout, subfield names, etc.

The num_xxx fields work with the 'countprefix' option to specify how many of a field should be generated.

48

Using CountPrefix to Omit Elements

if orig.name <> name;

cust.data.num_name = 1;

cust.data.name = %trim(name);

endif;

if orig.street <> street;

cust.data.address.num_street = 1;

cust.data.address.street = %trim(street);

endif;

if orig.City <> city;

cust.data.address.num_city = 1;

cust.data.address.city = %trim(city);

endif;

... (code above is repeated for state, postal, etc) ...

data-gen cust %data(jsonData: 'countprefix=num_')

%gen('YAJLDTAGEN');

DATA-GEN is basically DATA-INTO in reverse. You provide an RPG variable, and it
creates JSON that matches that variable's layout, subfield names, etc.

We only want to include
fields in the JSON document

that have been changed.

Num_ is the "countprefix",
which means num_name is

the number of name
elements, num_street is the
number of street elements,

etc. You can set it to 0 if you
want a field to be omitted.

DATA-GEN will place the
JSON data into the 'jsonData'
variable specified by %DATA

49

Calling DATA-GEN

data-gen cust %data(jsonData: 'countprefix=num_')

%gen('YAJLDTAGEN');

Here is the DATA-GEN call from the last slide:

• The first parameter, "cust" is the name of the data structure to generate from.

• The %DATA BIF tells DATA-GEN to put the output into the jsonData variable.

The second parameter is for options, we're using countprefix to enable support

for including/omitting elements we don't want.

• The %GEN BIF controls which program (think of it like a "driver") is used to

generate the document.
‒ YAJLDTAGEN is a %GEN program for generating JSON documents, included with

YAJL. The YAJLDTAGEN program is what determines that the output is JSON (vs.
other formats like XML, YAML, etc.)

• There are many other options available to both DATA-GEN and YAJLDTAGEN.

See the corresponding documentation for details.

50

Sending the JSON

if isNew;

method = 'POST';

url = BASEURL;

else;

method = 'PUT';

url = BASEURL + '/' + %char(custno);

endif;

monitor;

http_string(method: url: jsonData

: 'application/json');

on-error;

msg = http_error();

return *off;

endmon;

The logic to send the data
is the same as the XML

example, except the type is
now 'application/json'

51

For More About YAJL

For people on older releases, YAJL has subprocedures that can be used to

both create and interpret JSON documents, but they are not quite as easy to

read or understand as DATA-INTO and DATA-GEN.

There are full examples of these on my web site.

As mentioned earlier, I don't have enough time to explain all of the details of

YAJL in this talk. However, I do have other talks that focus entirely on YAJL

Working with JSON in RPG Using Open Source Tools

The handout for that talk can be found on my web site:

http://www.scottklement.com/presentations/

You can also download YAJL from my web site:

http://www.scottklement.com/yajl/

52

SOAP Web Services

SOAP = Simple Object Access Protocol

Like all web services:
• Involves a send/receive of documents representing parameters.
• SOAP documents are always XML
• Highly standardized, extra XML often required to fit standards
• The “SOAP messages” are the XML documents containing the parameters
• Almost always uses HTTP POST method
• The “verb” comes from a separate header called SoapAction
• WSDL documents (another XML format) are provided to show all of the details of the

service

WSDL = Web Services Description Lanuage (pronounced “whiz-dull”)
• An additional XML format
• The documentation for the web service (instead of Word, PDF, etc docs)
• ...except these docs are meant for a computer to read!

Despite the name, SOAP is complex. SOAP-specific software is almost always needed.

53

Consuming a SOAP API

You can consume a SOAP Web Service the same way you would consume a REST one
with HTTPAPI in RPG.

You will need to know this information:
• The URL (“endpoint”) of the service
• The input SOAP message (XML parameter document)
• The output SOAP message
• The SoapAction string needed

Then you can build the SOAP messages in your RPG program and send them with
http_string().

All of this information can be gleaned from the WSDL document.

54

Temperature Convert Example

I previously used public SOAP example sites, but unfortunately these free sites never
seem to last, and are taken down. Instead, I will demonstrate an in-house service.

IBM provides an example web service that converts Fahrenheit to Celsius on IBM I on their
Integrated Web Services server for IBM i. To learn more about IWS and providing web
services (in general) please see my “Providing RPG Web Services on IBM I” session. The
handout is online, here:
http://www.scottklement.com/presentations/#PROVIDING

Once the service has been set up, find the WSDL for this service on your IBM i:

• IBM Navigator for i (http://your-system:2001)
• Internet Configurations, IBM Web Administration for I
• Select the IWS server you configured
• Click “Manage Deployed Services”
• There will be a “View WSDL” link next to the ConvertTemp service

55

Use SoapUI to Read the WSDL

• Start SoapUI

• Click “SOAP” in the toolbar/ribbon

• Copy/Paste the WSDL link into the “Initial WSDL” field as shown above.

The WSDL is difficult to read in XML format, but much easier using a tool like

SoapUI. http://www.soapui.org (available in both free and commercial

versions)

56

Temperature Convert Example

• Expand the tree by opening “ConvertTempServicesPortBinding”, “converttemp”, and
“Request 1”

• Notice that you can read various property details (from the WSDL) for each of the
things you click (the binding, operation, request, etc)

• If you double-click “Request 1” it will show you what the SOAP message looks like,
and let you try it out.

57

Request and SoapAction

In the request window, you could see the SOAP message

(XML documents with parameters) as well as the URL.

You can try the request by clicking the green triangle (“play

button”)

The other thing you’ll eventually need is the SoapAction. You

can find it under the properties for the operation

(“converttemp” in this case)

The ConvertTemp example wants a blank SoapAction

58

Sample SOAP Documents

Here are example SOAP messages that I discovered by running the WSDL through
SoapUI. Now that I know what these look like, I can do the same thing from RPG…

In
p
u
t
M

e
s
s
a
g
e

O
u
tp

u
t
M

e
s
s
a
g
e

H DFTACTGRP(*NO) BNDDIR('HTTPAPI')

D TEMPCONV PR

D fahrenheit 15p 5 const

D TEMPCONV PI

D fahrenheit 15p 5 const

/copy httpapi_h

D URL s 100a varying

D SOAP s 1000A varying

D response s 1000a varying

D TEMPOUT s 7p 2

/free

http_debug(*ON);

URL = 'http://power8:10076/web/services/ConvertTempService/ConvertTemp';

http_setOption('SoapAction': '""');

Running SOAP from RPG (1/2)

SOAP = '+

<soapenv:Envelope +

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" +

xmlns:con="http://converttemp.wsbeans.iseries/">+

<soapenv:Header/>+

<soapenv:Body>+

<con:converttemp>+

<arg0>+

<TEMPIN>' + %char(%inth(fahrenheit)) + '</TEMPIN>+

</arg0>+

</con:converttemp>+

</soapenv:Body>+

</soapenv:Envelope>';

response = http_string('POST': URL: SOAP: 'text/xml');

xml-into TEMPOUT %xml(response: 'case=convert ns=remove +

path=Envelope/Body/converttempResponse+

/return/TEMPOUT');

http_comp('Celsius = ' + %char(%inth(TEMPOUT)));

*inlr = *on;

/end-free

Running Soap from RPG (2/2)

The ns=remove
option strips the

namespaces.

The path= option
lets us extract one

piece of the
document.

http_comp sends a
"completion"

message

Soap from RPG Output

62

WSDL2RPG

For SOAP web services, you might consider using WSDL2RPG – another open source
project, this one from Thomas Raddatz. You give WSDL2RPG the URL or IFS path of a
WSDL file, and it generates the RPG code to call HTTPAPI.

WSDL2RPG URL('/home/myUserId/CurrencyConvertor.wsdl')

SRCFILE(MYLIB/QRPGLESRC)

SRCMBR(CURRCONV)

Then compile CURRCONV as a module, and call it with the appropriate parameters.

• The RPG it generates often needs to be tweaked before it'll compile.
• Usually string lengths

• The code it generates is much more complex than what you'd use if you generated it
yourself, or used SoapUI

• Can only do SOAP (not REST)

But don't be afraid to help with the project! It'll be really nice when it's perfected!
http://www.tools400.de/English/Freeware/WSDL2RPG/wsdl2rpg.html

63

For More Information

You can download HTTPAPI from Scott's Web site:
http://www.scottklement.com/httpapi/

Most of the documentation for HTTPAPI is in the source code itself.

• Read the comments in the HTTPAPI_H member

• Sample programs called EXAMPLE1, EXAMPLE2, EXAMPLE3, etc..

The best places to get help for HTTPAPI are:

• the FTPAPI/HTTPAPI mailing list
Signup: http://www.scottklement.com/mailman/listinfo/ftpapi

Archives: http://www.scottklement.com/archives/ftpapi/

64

More Information / Resources

Scott’s IBM I port of YAJL:

http://www.scottklement.com/yajl/

The original YAJL site (not IBM i oriented)

https://github.com/lloyd/yajl

IBM's web site for the Integrated Web Services (IWS) tool:

http://www.ibm.com/systems/i/software/iws/
http://www.ibm.com/systems/i/software/iws/quickstart_server.html

SoapUI home page
http://www.soapui.org

WSDL2RPG Home Page
http://www.tools400.de/English/Freeware/WSDL2RPG/wsdl2rpg.html

65

This Presentation

You can download a PDF copy of this presentation, as well as
other related materials from:

http://www.scottklement.com/presentations/

Thank you!

